Transparent and Conformal Microcoil Arrays for Spatially Selective Neuronal Activation

Author:

Raghuram VineethORCID,Datye Aditya D.ORCID,Fried Shelley I.ORCID,Timko Brian P.ORCID

Abstract

AbstractMagnetic stimulation represents a compelling modality for achieving neuronal activation with high spatial resolution and low toxicity. Stimulation coils can be designed to achieve localized, spatially asymmetric fields that target neurons of a particular orientation. Furthermore, these devices may be encapsulated within biopolymers thereby avoiding direct metal/tissue interfaces that could induce chronic inflammation and glial scarring. Herein, we report a multiplexed microcoil array for localized activation of cortical neurons and retinal ganglion cells. We designed a computational model that related the activation function to the geometry and arrangement of coils, and selected a geometry with a region of activation <50 μm wide. We then fabricated SU8/Cu/SU8 tri-layer devices which were flexible, transparent and conformal and featured four individually-addressable microcoil stimulation elements. Interfaced with ex vivo cortex or retina slices from GCaMP6-transfected mice, we observed that individual neurons located within 40 μm of the element tip could be activated repeatedly and in a dose (power) dependent fashion. Taken together, these results highlight the potential of magnetic stimulation devices for brain-machine interfaces and could open new routes toward bioelectronic therapies including prosthetic vision devices.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3