Abstract
ABSTRACTBACKGROUNDSugarcane hemicellulosic material is a compelling source of usually neglected xylose that could figure as feedstock to produce chemical building blocks of high economic value, such as xylitol. In this context, Saccharomyces cerevisiae strains typically used in the Brazilian bioethanol industry are a robust chassis for genetic engineering, given their robustness towards harsh operational conditions and outstanding fermentation performance. Nevertheless, there are no reports on the use of these strains for xylitol production using sugarcane hydrolysate.RESULTSPotential single-guided RNA off-targets were analyzed in two preeminent industrial strains (PE-2 and SA-1), providing a database of 5’-NGG 20 nt sequences, and guidelines for the fast and cost-effective CRISPR-editing of such strains. After genomic integration of a NADPH-preferring xylose reductase (XR), FMYX (SA-1 hoΔ::xyl1) and CENPKX (CEN.PK-122 hoΔ::xyl1) were tested in varying cultivation conditions for xylitol productivity to infer influence of the genetic background. Near-theoretical yields were achieved for all strains, however the industrial consistently outperformed the laboratory strain. Batch fermentation of raw sugarcane bagasse hydrolysate with remaining solid particles represented a challenge for xylose metabolization and 3.65 ± 0.16 g/L xylitol titre was achieved by FMYX. Finally, quantification of NADPH - cofactor implied in XR activity - revealed that FMYX has 33% more available cofactors than CENPKX.CONCLUSIONSAlthough widely used in several S. cerevisiae strains, this is the first report of CRISPR-Cas9 editing major yeast of the Brazilian bioethanol industry. Fermentative assays of xylose consumption revealed that NADPH availability is closely related to mutant strains’ performance. We also pioneer the use of sugarcane bagasse as a substrate for xylitol production. Finally, we demonstrate how industrial background SA-1 is a compelling chassis for the second-generation industry, given its inhibitor tolerance and better redox environment that may favor production of reduced sugars.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献