Plug and play: Is “directed endosymbiosis” of chloroplasts possible?

Author:

Shapiro Karin OlszewskiORCID

Abstract

AbstractThe origin of mammalian mitochondria and plant chloroplasts is thought to be endosymbiosis. Millennia ago, a bacterium related to typhus-causing bacteria may have been consumed by a proto-eukaryote and over time evolved into an organelle inside eukaryotic cells, known as a mitochondrion. The plant chloroplast is believed to have evolved in a similar fashion from cyanobacteria. This project attempted to use “directed endosymbiosis” (my term) to investigate if chloroplasts can be taken up by a land animal and continue to function. It has been shown previously that mouse fibroblasts could incorporate isolated chloroplasts when co-cultured. Photosynthetic bacteria containing chloroplasts have been successfully injected into zebrafish embryos, mammalian cells, and ischemic rodent hearts. The photosynthetic alga Chlamydomonas reinhardtii (C. reinhardtii) has also been injected into zebrafish embryos. However, to the best of my knowledge, injection of isolated chloroplasts into a land animal embryo has not been attempted before.In four pilot experiments, solutions of chloroplasts in PBS were microinjected into Drosophila melanogaster (D. melanogaster) embryos to determine if the embryos would tolerate the foreign protein. Interestingly, results indicated that a portion of the D. melanogaster embryos appeared to tolerate the injections and survive to adulthood. To determine if chloroplasts had indeed been transferred, larvae were placed under fluorescent microscopy. Chlorophyll (serving as the reporter) was found to be present in several larvae and to decline in amount over time. To investigate if the chloroplasts still functioned, a radiotracer food intake assay was performed. It was hypothesized that if the chloroplasts were generating ATP (and possibly glucose), the larvae might need less food. Results indicated a decrease in intake, however this might have occurred for other reasons.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. The molecular machinery of Keilin's respiratory chain

2. Supramolecular organization of thylakoid membrane proteins in green plants

3. Chlorophyll Biosynthesis.

4. Royal Society of Chemistry. Photosynthesis. 2021. https://www.rsc.org/Education/Teachers/Resources/cfb/Photosynthesis.htm

5. Prolonging the life span;The Scientific Monthly,1934

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3