BRPF3 knockdown or inhibition moderately reverses olaparib resistance in high grade serous ovarian carcinoma

Author:

Bitler Benjamin G.ORCID,Yamamoto Tomomi M.,McMellen Alexandra,Kim Hyunmin,Watson Zachary L.

Abstract

AbstractBackgroundPARP inhibitors (PARPi) kill cancer cells by stalling DNA replication and preventing DNA repair, resulting in a critical accumulation of DNA damage. Resistance to PARPi is a growing clinical problem in the treatment of high grade serous ovarian carcinoma (HGSOC). Acetylation of histone H3 lysine 14 (H3K14ac) and associated histone acetyltransferases (HATs) have known functions in DNA repair and replication, but their expression and activities have not been examined in the context of PARPi-resistant HGSOC.ResultsUsing mass spectrometry profiling of histone modifications, we observed altered H3K14ac enrichment in PARPi-resistant HGSOC cells relative to isogenic PARPi-sensitive lines. By RT-qPCR and RNA-Seq, we also observed altered expression of numerous HATs in PARPi-resistant HGSOC cells and a PARPi-resistant PDX model. Knockdown of HATs only modestly altered PARPi response, although knockdown and inhibition of PCAF significantly increased resistance. Pharmacologic inhibition of HBO1 severely depleted H3K14ac but did not affect PARPi response. However, knockdown and inhibition of BRPF3, which is known to interact in a complex with HBO1, did reduce PARPi resistance.ConclusionsThis study demonstrates that severe depletion of H3K14ac does not affect PARPi response in HGSOC. Our data suggest that bromodomain functions of HAT proteins such as PCAF, or accessory proteins such as BRPF3, may play a greater role in PARPi response than acetyltransferase functions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3