Abstract
ABSTRACTThe 5′ untranslated region (UTR) of diverse mRNAs contains secondary structures that can influence protein synthesis by modulating the initiation step of translation. Studies support the ability of these structures to inhibit 40S subunit recruitment and scanning, but the dynamics of ribosomal subunit interactions with mRNA remain poorly understood. Here, we developed a reconstituted Saccharomyces cerevisiae cell-free translation system with fluorescently labeled ribosomal subunits. We applied this extract and single-molecule fluorescence microscopy to monitor, in real time, individual 40S and 60S interactions with mRNAs containing 5’ UTR hairpin structures with varying thermostability. In comparison to mRNAs containing no or weak 5′UTR hairpins (ΔG >= -5.4 kcal/mol), mRNAs with stable hairpins (ΔG <= -16.5 kcal/mol) showed reduced numbers of 60S recruitment to mRNA, consistent with the expectation of reduced translation efficiency for such mRNAs. Interestingly, such mRNAs showed increased numbers of 40S recruitment events to individual mRNAs but with shortened duration on mRNA. Correlation analysis showed that these unstable 40S binding events were nonproductive for 60S recruitment. Furthermore, although the mRNA sequence is long enough to accommodate multiple 40S, individual mRNAs are predominantly observed to engage with a single 40S at a time, indicating the sequestering of mRNA 5’ end by initiating 40S. Altogether, these observations suggest that stable cap-distal hairpins in 5’ UTR reduce initiation and translation efficiency by destabilizing 40S-mRNA interactions and promoting 40S dissociation from mRNA. The premature 40S dissociation frees mRNA 5′-end accessibility for new initiation events, but the increased rate of 40S recruitment is insufficient to compensate for the reduction of initiation efficiency due to premature 40S dissociation. This study provides the first single-molecule kinetic characterization of 40S/60S interactions with mRNA during cap-dependent initiation and the modulation of such interactions by cap-distal 5’ UTR hairpin structures.
Publisher
Cold Spring Harbor Laboratory