Abstract
ABSTRACTCoordinated whole-brain neural dynamics are essential for proper control of the functionality of different brain systems. Multisite simultaneous or sequential stimulations may provide tools for mechanistic studies of brain functions and the treatment of neuropsychiatric disorders. Conventional circular and figure-8 Transcranial Magnetic Stimulation (TMS) coils occupy a large footprint, and it is difficult to reach desired multiple stimulation locations with close proximity for comprehensive multisite stimulations. These conventional coils, limited by the depth-spread tradeoff rule, also lack the required focality for targeted stimulations. In this work, we propose and demonstrate angle-tuned TMS (AT) coils with an intrinsically reduced footprint with their geometric arrangements of stacking and angle tuning. The stimulation depth can be adjusted with the coil stacking number, and the field spread can be reduced by increasing the tilted wire-wrapping angle of the coils. With either smaller or larger diameter coils than a standard commercial figure-8 coil, we show, theoretically and experimentally, improved field decay rate and field intensity, and the reduced field spread spot size at different stimulation depths. These results indicate that the proposed novel coil establishes a better depth-spread tradeoff curve than the conventional circular and figure-8 coils. This coil design has a simple and single element structure and provides a promising solution for an improved multisite brain stimulation performance and serves as the building block of more complex coils for further depth-spread improvements.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficacy of ferromagnetic cores on the performance of TMS coils;Smart Biomedical and Physiological Sensor Technology XIV;2022-06-08