Abstract
AbstractResistance to Neonectria ditissima, the fungus causing European canker in apple, was studied in a multiparental population of apple scions using several phenotyping methods. The studied population consists of individuals from multiple families connected through a common pedigree. The degree of disease of each individual in the population was assessed in three experiments: artificial inoculations of detached dormant shoots, potted trees in a glasshouse and in a replicated field experiment. The genetic basis of the differences in disease was studied using a pedigree-based analysis (PBA). Three quantitative trait loci (QTL), on linkage groups (LG) 6, 8 and 10 were identified in more than one of the phenotyping strategies. An additional four QTL, on LG 2, 5, 15 and 16 were only identified in the field experiment. The QTL on LG2 and 16 were further validated in a biparental population. QTL effect sizes were small to moderate with 4.3 to 19 % of variance explained by a single QTL. A subsequent analysis of QTL haplotypes revealed a dynamic response to this disease, in which the estimated effect of a haplotype varied over the field time-points. Two groups of QTL-haplotypes could be distinguished, one that displayed increased effect and one with a constant effect across time-points. These results suggest that there are different modes of control of N. ditissima in the early stages of infection compared to later time-points of disease development. It also shows that multiple QTL will need to be considered to improve resistance to European canker in apple breeding germplasm.
Publisher
Cold Spring Harbor Laboratory