TSC22D4 interacts with Akt1 in response to metabolic and stress signals

Author:

Demir Sevgican,Wolff Gretchen,Wieder Annika,Maida Adriano,Rahm Marco,Schnölzer Martina,Hauck Stefanie,Szendrödi Julia,Herzig Stephan,Üstünel Bilgen EkimORCID

Abstract

AbstractTransforming Growth Factor β 1 Stimulated Clone 22 D4 (TSC22D4) is an intrinsically disordered protein that regulates cellular and physiological processes such as cell proliferation, cellular senescence as well as hepatic glucose and lipid metabolism. The molecular mechanism of TSC22D4 action in these cellular and metabolic functions, however, remains largely elusive. Here, we identified TSC22D4 as a novel protein kinase B/Akt1 interacting protein, a critical mediator of insulin/PI3K signaling pathway implicated in diverse set of diseases including type 2 diabetes, obesity and cancer. TSC22D4 interacts with Akt1 not constitutively but rather in a regulatory manner. While glucose and insulin stimulation of cells or refeeding of mice impair the hepatic TSC22D4-Akt1 interaction, inhibition of mitochondria and oxidative stress, promote it; indicating that extra- and intra-cellular cues play a key role in controlling TSC22D4-Akt1 interaction. Our results also demonstrate that together with its dimerization domain, i.e. the TSC box, TSC22D4 requires its intrinsically disordered region (D2 domain) to interact with Akt1. To understand regulation of TSC22D4 function further, we employed tandem mass spectrometry and identified 15 novel phosphorylation sites on TSC22D4. Similar to TSC22D4-Akt1 interaction, TSC22D4 phosphorylation also responds to environmental signals such as starvation, mitochondrial inhibition and oxidative stress. Interestingly, 6 out of the 15 novel phosphorylation sites lie within the TSC22D4 D2 domain, which is required for TSC22D4-Akt1 interaction. Characterization of the regulation and function of these novel phosphorylation sites, in the future, will shed light on our understanding of the role of TSC22D4-Akt1 interaction in both cell biological and physiological functions. Overall, our findings postulate a model whereby TSC22D4 acts as an environmental sensor and interacts with Akt1 to regulate cell proliferation, cellular senescence as well as maintain metabolic homeostasis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3