The impact of Piscirickettsia Salmonis infection on genome-wide DNA methylation profile in Atlantic Salmon

Author:

Mukiibi Robert,Peñaloza Carolina,Gutierrez Alejandro,Yáñez José M.,Houston Ross D.,Robledo DiegoORCID

Abstract

AbstractSalmon rickettsial septicaemia (SRS), caused by the intracellular bacteria Piscirickettsia Salmonis, generates significant mortalities to farmed Atlantic salmon, particularly in Chile. Due to its economic importance, a wealth of research has focussed on the biological mechanisms underlying pathogenicity of P. salmonis, the host response, and genetic variation in host resistance. DNA methylation is a fundamental epigenetic mechanism that influences almost every biological process via the regulation of gene expression and plays a key role in the response of an organism to stimuli. In the current study, the role of head kidney and liver DNA methylation in the response to P. salmonis infection was investigated in a commercial Atlantic salmon population. A total of 66 salmon were profiled using reduced representation bisulphite sequencing (RRBS), with head kidney and liver methylomes compared between infected animals (3 and 9 days post infection) and uninfected controls. These included groups of salmon with divergent (high or low) breeding values for resistance to P. salmonis infection, to examine the influence of genetic resistance. Head kidney and liver showed organ-specific global methylation patterns, but with similar distribution of methylation across gene features. Integration of methylation with RNA-Seq data revealed that methylation levels predominantly showed a negative correlation with gene expression, although positive correlations were also observed. Methylation within the first exon showed the strongest negative correlation with gene expression. A total of 911 and 813 differentially methylated CpG sites were identified between infected and control samples in the head kidney at 3 and 9 days respectively, whereas only 30 and 44 sites were differentially methylated in the liver. Differential methylation in the head kidney was associated with immunological processes such as actin cytoskeleton regulation, phagocytosis, endocytosis and pathogen associated pattern receptor signaling. We also identified 113 and 48 differentially methylated sites between resistant and susceptible fish in the head kidney and liver respectively. Our results contribute to the growing understanding of the role of methylation in regulation of gene expression and response to infectious diseases, and in particular reveal key immunological functions regulated by methylation in Atlantic salmon in response to P. salmonis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3