Abstract
The effect of phosphorylation of a serine residue in the Rap protein, residing at the complex interface of Rap-Raf complex is studied using atomistic molecular dynamics simulations. As the phosphosite of interest (SER39) is buried at the interface of the Rap-Raf complex, phosphorylation of only Rap protein was simulated and then complexed with the RBD of Raf for further analysis of complex stability. Our simulations reveal that the phosophorylation increases the binding of complex through strong electrostatic interactions and changes the charge distribution of the interface significantly. This is manifested as an increase in stable salt-bridge interactions between the Rap and Raf of the complex. Network analysis clearly shows that the phosphorylation of SER39 reorganizes the community network to include the entire region of Raf chain, including, Raf L4 loop potentially affecting downstream signalling.
Publisher
Cold Spring Harbor Laboratory