Abstract
AbstractThermo-sensitive male sterility is of vital importance to heterosis, or hybrid vigor in crop production and hybrid breeding. Therefore, it is meaningful to study the function of the genes related to pollen development and male sterility, which is still not fully understand currently. Here, we conducted comparative analyses to screen fertility related genes using RNA-seq, iTRAQ, and PRM-based assay. A gene encoding expansin protein in wheat, TaEXPB5, was isolated in KTM3315A, which was in the cell wall and preferentially upregulated expression in the fertility anthers. The silencing of TaEXPB5 displayed pollen abortion, the declination or sterility of fertility. Further, cytological investigation indicated that the silencing of TaEXPB5 induced the early degradation of tapetum and abnormal development of pollen wall. These results revealed that the silencing of TaEXPB5 could eliminate the effects of temperature on male fertility, and resulting in functional loss of fertility conversion, which implied that TaEXPB5 may be essential for anther or pollen development and male fertility of KTM3315A. These findings provide a novel insight into molecular mechanism of fertility conversion for thermo-sensitive cytoplasmic male-sterility wheat, and contribute to the molecular breeding of hybrid wheat in the future.HighlightTaEXPB5 coffers to anther or pollen development and male fertility in KTM3315A, its silencing could eliminate the effects of temperature on male fertility, and resulting in functional loss of fertility conversion.
Publisher
Cold Spring Harbor Laboratory