Author:
Bandyopadhyay Debolina,Mishra Padmaja P
Abstract
AbstractHelicases are motor proteins involved in multiple activities to carry out manipulation of the nucleic acids for efficient gene regulation. In case of roadblocks that can lead the replication machinery to get halted, a complex molecular surveillance system utilizing helicases as its key player ensures the halted fork to resume its duplication process. RecG, belonging to the category of Superfamily-2 plays a vital role in rescuing different kinds of stalled fork. Here, through adoption of single-molecule techniques we have attempted to probe the DNA unwinding features by RecG and tried to capture several stages of genetic rearrangement. An elevated processivity of RecG has been observed for the kinds of stalled fork where progression of lagging daughter strand is ahead than that of the leading strand. Through precise alteration of its function in terms of unwinding, depending upon the substrate DNA, RecG catalyzes the formation of Holliday junction from a stalled fork DNA. In summary, we have featured that RecG adopts asymmetric mode of locomotion to unwind the lagging daughter strand to facilitate Holliday junction creation which acts as a suitable intermediate for recombinational repair pathway.
Publisher
Cold Spring Harbor Laboratory