Abstract
ABSTRACTA lack of tractable experimental systems in which to test hypotheses about the ecological and evolutionary drivers of disease spillover and emergence has limited our understanding of these processes. Here we introduce a promising system: Caenorhabditis hosts and Orsay virus, a positive-sense single-stranded RNA virus that naturally infects C. elegans. We assayed the susceptibility of species across the Caenorhabditis tree and found 21 of 84 wild strains belonging to 14 of 44 species to be susceptible to Orsay virus. Confirming patterns documented in other systems, we detected effects of host phylogeny on susceptibility. We then tested whether susceptible strains were capable of transmitting Orsay virus by transplanting exposed hosts and determining whether they transmitted infection to conspecifics during serial passage. We found no evidence of transmission in 10 strains (virus undetectable after passaging), evidence of low-level transmission in 5 strains (virus lost between passage 1 and 5), and evidence of sustained transmission in 6 strains (including all 3 experimental C. elegans strains). Transmission was associated with host phylogeny and with viral amplification in exposed populations. Variation in Orsay virus susceptibility and transmission among Caenorhabditis species suggests that the system could be powerful for studying spillover and emergence.
Publisher
Cold Spring Harbor Laboratory
Reference68 articles.
1. A pneumonia outbreak associated with a new coronavirus of probable bat origin
2. In press. Coronavirus resource center. COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU). See https://coronavirus.jhu.edu/map.html (accessed on 13 October 2021).
3. Global trends in emerging infectious diseases
4. Nipah Virus: A Recently Emergent Deadly Paramyxovirus
5. Ecological dynamics of emerging bat virus spillover
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献