Abstract
AbstractRetrotransposons comprise a substantial fraction of eukaryotic genomes reaching the highest proportions in plants. Therefore, identification and annotation of retrotransposons is an important task in studying regulation and evolution of plant genomes. A majority of computational tools for mining transposable elements (TEs) are designed for subsequent genome repeat masking, often leaving aside the element lineage classification and its protein domain composition. Additionally, studies focused on diversity and evolution of a particular group of retrotransposons often require substantial customization efforts from researchers to adapt existing software to their needs. Here, we developed a computational pipeline to mine sequences of protein-coding retrotransposons based on the sequences of their conserved protein domains - DARTS. Using the most abundant group of TEs in plants - long terminal repeat (LTR) retrotransposons (LTR-RTs), we show that DARTS has radically higher sensitivity of LTR-RTs identification compared to a widely accepted LTRharvest tool. DARTS can be easily customized for specific user needs. As a result, DARTS returns a set of structurally annotated nucleotide and amino acid sequences which can be readily used in subsequent comparative and phylogenetic analyses. DARTS should facilitate researchers interested in discovery and in-detail analysis of diversity and evolution of retrotransposons, LTR-RTs, and other protein-coding TEs.
Publisher
Cold Spring Harbor Laboratory