A family of fitness landscapes modeled through gene regulatory networks

Author:

Yang Chia-HungORCID,Scarpino Samuel V.ORCID

Abstract

AbstractOver 100 years, Fitness landscapes have been a powerful metaphor for understanding the evolution of biological systems. These landscapes describe how genotypes are connected to each other and are related according to relative fitness. Despite the high dimensionality of such real-world landscapes, empirical studies are often limited in their ability to quantify the fitness of different genotypes beyond point mutations, while theoretical works attempt statistical/mechanistic models to reason the overall landscape structure. However, most classical fitness landscape models overlook an instinctive constraint that genotypes leading to the same phenotype almost certainly share the same fitness value, since the information of genotype-phenotype mapping is rarely incorporated. Here, we investigate fitness landscape models through the lens of Gene Regulatory Networks (GRNs), where the regulatory products are computed from multiple genes and collectively treated as the phenotypes. With the assumption that regulatory mediators/products exhibit binary states, we prove topographical features of GRN fitness landscape models such as accessibility and connectivity insensitive to the choice of the fitness function. Furthermore, using graph theory, we deduce a mesoscopic structure underlying GRN fitness landscape models that retains necessary information for evolutionary dynamics with minimal complexity. We also propose an algorithm to construct such a mesoscopic backbone which is more efficient than the brute-force approach. Combined, this work provides mathematical implications for fitness landscape models with high-dimensional genotype-phenotype mapping, yielding the potential to elucidate empirical landscapes and their resulting evolutionary processes in a manner complementary to existing computational studies.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Sewall Wright . The roles of mutation, inbreeding, crossbreeding, and selection in evolution. Proceedings of the Sixth International Congress on Genetics, pages 356–366, 1932.

2. Empirical fitness landscapes and the predictability of evolution

3. Evolution in the light of fitness landscape theory;Trends in ecology & evolution,2019

4. Quantitative analyses of empirical fitness landscapes;Journal of Statistical Mechanics: Theory and Experiment,2013

5. Deterministic and Stochastic Regimes of Asexual Evolution on Rugged Fitness Landscapes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3