Characterising genome architectures using Genome Decomposition Analysis

Author:

Aunin Eerik,Berriman Matthew,Reid Adam JamesORCID

Abstract

AbstractGenome architecture describes how genes and other features are arranged in genomes. These arrangements reflect the evolutionary pressures on genomes and underlie biological processes such as chromosomal segregation and the regulation of gene expression. We present a new tool called Genome Decomposition Analysis (GDA) that characterises genome architectures and acts as an accessible approach for discovering hidden features of a genome assembly. With the imminent deluge of high quality genome assemblies from projects such as the Darwin Tree of Life and the Earth BioGenome Project, GDA has been designed to facilitate their exploration and the discovery of novel genome biology. We highlight the effectiveness of our approach in characterising the genome architectures of single-celled eukaryotic parasites from the phylum Apicomplexa and show that it scales well to large genomes.SignificanceGenome sequencing has revealed that there are functionally important arrangements of genes, repetitive elements and regulatory sequences within chromosomes. Identifying these arrangements requires extensive computation and analysis. Furthermore, improvements in genome sequencing technology and the establishment of consortia aiming to sequence all species of eukaryotes mean that there is a need for high throughput methods for discovering new genome biology. Here we present a software pipeline, named GDA, which determines the patterns of genomic features across chromosomes and uses these to characterise genome architecture. We show that it recapitulates the known genome architecture of several Apicomplexan parasites and use it to identify features in a recently sequenced, less well-characterised genome. GDA scales well to large genomes and is freely available.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3