Mature Neurons’ sensitivity to oxidative stress is epigenetically programmed by alternative splicing and mRNA stability

Author:

Zhou Yuan,Rashad SherifORCID,Tominaga Teiji,Niizuma Kuniyasu

Abstract

AbstractNeuronal differentiation is a complex process that entails extensive morphological, transcriptional, metabolic, and functional changes that dictate neuronal lineage commitment. Much less understood is the role that epigenetic and epi-transcriptional reprogramming plays in the process of neuronal differentiation and maturation. To depict the whole landscape of transcriptomics and epigenetic changes during neuronal differentiation and maturation, we differentiated SH-SY5Y cells and performed RNA sequencing on differentiated and undifferentiated cells. 728 differentially expressed genes (DEGs) enriched in synaptic signaling and cell morphogenesis pathways were observed. Moreover, transcriptome-wide mRNA stability profiling revealed that genes with altered stability were exceptionally enriched for redox homeostasis pathways. Mature neurons are known to be highly sensitive to oxidative stress, which is crucial in the pathophysiology of neurodegenerative disease. Our results suggest that this heightened sensitivity is regulated at the mRNA stability level (i.e., epigenetic) rather than at the transcriptional level. Alternative splicing analysis revealed the exon skipping and alternative mRNA isoforms enriched for morphogenesis related pathway. Alternatively, alternative 5 and 3 prime splicing site, intron retention and mutually exclusive exon events exclusively clustered in the translation and translation initiation pathways, suggesting the potential effect of alternative splicing on translation following neuronal maturation. Splice motif analysis revealed enriched motifs for RBPs that regulate various splice types and can be further correlated to distinct phenotypical changes during neuronal differentiation and maturation. Here we present an extensive exploration of the transcriptional and epigenetic changes and their potential association with the process of neuronal differentiation, providing a new insight into understanding the molecular mechanism of neuronal function and behavior.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3