Author:
Zhao Fengjie,Chavez Marko S.,Naughton Kyle L.,Cole Christina M.,Gralnick Jeffrey A.,El-Naggar Mohamed Y.,Boedicker James Q.
Abstract
AbstractElectroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneiensis biofilm patterning on transparent electrode surfaces and measurements demonstrated tunable biofilm conduction dependent on pattern size. Controlling biofilm geometry also enabled us, for the first time, to quantify the intrinsic conductivity of living S. oneidensis biofilms and experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Publisher
Cold Spring Harbor Laboratory