Plasmodium SAS4/CPAP is a flagellum basal body component during male gametogenesis, but is not essential for parasite transmission

Author:

Zeeshan MohammadORCID,Brady DeclanORCID,Markus RobertORCID,Vaughan SueORCID,Ferguson DavidORCID,Holder Anthony A.ORCID,Tewari RitaORCID

Abstract

AbstractThe centriole/basal body (CBB) is an evolutionarily conserved organelle acting as a microtubule organising centre (MTOC) to nucleate cilia, flagella and the centrosome. SAS4/CPAP is a conserved component associated with BB biogenesis in many model flagellated cells. Plasmodium, a divergent unicellular eukaryote and causative agent of malaria, displays an atypical closed mitosis with an MTOC, reminiscent of the acentriolar MTOC, embedded in the nuclear membrane at most proliferative stages. Mitosis during male gamete formation is accompanied by flagellum formation: within 15 minutes, genome replication (from 1N to 8N) and three successive rounds of mitosis without nuclear division occur, with coordinated axoneme biogenesis in the cytoplasm resulting in eight flagellated gametes. There are two MTOCs in male gametocytes. An acentriolar MTOC located with the nuclear envelope and a centriolar MTOC (basal body) located within the cytoplasm that are required for flagellum assembly. To study the location and function of SAS4 during this rapid process, we examined the spatial profile of SAS4 in real time by live cell imaging and its function by gene deletion. We show its absence during asexual proliferation but its presence and coordinated association and assembly of SAS4 with another basal body component, kinesin8B, which is involved in axoneme biogenesis. In contrast its separation from the nuclear kinetochore marker NDC80 suggests that SAS4 is part of the basal body and outer centriolar MTOC residing in the cytoplasm. However, deletion of the SAS4 gene produced no phenotype, indicating that it is not essential for male gamete formation or parasite transmission through the mosquito.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3