Preliminary Characterization of Phage-like Particles from the Male-Killing Mollicute Spiroplasma poulsonii (an Endosymbiont of Drosophila)

Author:

Ramirez PaulinoORCID,Leavitt Justin C.ORCID,Gill Jason J.ORCID,Mateos MarianaORCID

Abstract

AbstractViruses are vastly abundant and influential in all ecosystems, and are generally regarded as pathogens. Viruses of prokaryotes (themselves highly diverse and abundant) are known as bacteriophages or phages. Phages engage in diverse associations with their hosts, and contribute to regulation of biogeochemical processes, horizontal movement of genes, and control of bacterial populations. Recent studies have revealed the influential role of phage in the association of arthropods and their heritable endosymbiotic bacteria (e.g. the Proteobacteria genera Wolbachia and Hamiltonella). Despite prior studies (∼30 years ago) documenting presence of phage in the mollicute Spiroplasma infecting Drosophila, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. The present work isolated phage-like particles from the male-killing Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Our results recovered three ∼19 kb phage-like contigs (two in NSRO and one in MSRO-Br), and two smaller non-phage-like contigs encoding a known Spiroplasma toxin and an insertion element. Whole or parts of the particle-derived contigs were found in the genome assemblies of members of the Spiroplasma poulsonii clade. Although our results do not allow us to distinguish whether the contigs obtained represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We discuss potential implications of our findings and suggest future directions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Male-killing mechanisms vary between Spiroplasma species;Frontiers in Microbiology;2022-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3