Rapid genomic evolution in Brassica rapa with bumblebee selection in experimental evolution

Author:

Frachon LéaORCID,Schiestl Florian P.ORCID

Abstract

AbstractInsect pollinators shape rapid phenotypic evolution of traits related to floral attractiveness and plant reproductive success. However, the underlying genomic changes and their impact on standing genetic variation remain largely unknown despite their importance in predicting adaptive responses in nature or in crop’s artificial selection. Here, based on a previous, nine generation experimental evolution study with fast cycling Brassica rapa plants adapting to bumblebees, we document genomic evolution associated to the adaptive process. We performed a genomic scan of the allele frequency changes along the genome and estimated the nucleotide diversity and genomic variance changes. We detected signature of selection associated with rapid changes in allelic frequencies on multiple loci. During experimental evolution, we detected an increase in overall genomic variance, whereas for loci under selection, a reduced variance was apparent in both replicates suggesting a parallel evolution. Our study highlights the polygenic nature of short-term pollinator adaptation and the importance of a such genetic architecture in the maintenance of genomic variance during strong natural selection by biotic factors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3