Abstract
AbstractThe bifunctional enzyme Δ1-pyrroline-5-carboxylate synthase (P5CS) is central to the synthesis of proline and ornithine. Pathogenic mutations in P5CS gene (ALDH18A1) lead to neurocutaneous syndrome and skin relaxation connective tissue disease in humans, and P5CS deficiency seriously damages the ability to resist adversity in plants, which has an essential role in agriculture and human health. Recently, P5CS has been demonstrated forming the cytoophidium in vivo and filaments in vitro. However, the underlying mechanism for the function of P5CS filamentation and catalyze the synthesis of P5C is hardly accessible without structural basis. Here, we have succeeded in determining the full-length structures of Drosophila P5CS filament in three states at resolution from 3.1 to 4.3 Å under cryo-electron microscopy, we observed the distinct ligand-binding states and conformational changes for GK and GPR domain separately. These structures show the distinctive spiral filament is assembled by P5CS tetramers and stabilized by multiple interfaces. Point mutations that deplete such interactions disturb P5CS filamentation and greatly reduce the activity. Our findings reveal a previously undescribed mechanism that filamentation is crucial for the coordination between GK and GPR domains, and provide insights into structural basis for catalysis function of P5CS filament.
Publisher
Cold Spring Harbor Laboratory