The dual role of the RETINOBLASTOMA-RELATED protein in the DNA damage response is spatio-temporally coordinated by the interaction with LXCXE-containing proteins

Author:

Zaragoza Jorge ZamoraORCID,Klap KatinkaORCID,Heidstra RenzeORCID,Zhou WenkunORCID,Scheres BenORCID

Abstract

AbstractLiving organisms face threats to genome integrity caused by environmental challenges or metabolic errors in proliferating cells. To avoid the spread of mutations, cell division is temporarily arrested while repair mechanisms deal with DNA lesions. Afterwards, cells either resume division or respond to unsuccessful repair by withdrawing from the cell cycle and undergoing cell differentiation or cell death. How the success rate of DNA repair connects to the execution of cell death remains incompletely known, particularly in plants. Here we provide evidence that the Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein, shown to play structural and transcriptional functions in the DNA damage response (DDR), coordinates these processes in time by successive interactions through its B-pocket sub-domain. Upon DNA damage induction, RBR forms nuclear foci; but the N849F substitution in the B-pocket, which specifically disrupts binding to LXCXE motif-containing proteins, abolishes RBR focus formation and leads to growth arrest. After RBR focus formation, the stress-responsive gene NAC044 arrests cell division. As RBR is released from nuclear foci, it can be bound by the conserved LXCXE motif in NAC044. RBR-mediated cell survival is inhibited by the interaction with NAC044. Disruption of NAC044-RBR interaction impairs the cell death response but is less important for NAC044 mediated growth arrest. Noteworthy, unlike many RBR interactors, NAC044 binds to RBR independent of RBR phosphorylation. Our findings indicate that the availability of the RBR B-pocket to interact with LXCXE-containing proteins couples RBR DNA repair functions and RBR transcriptional functions of in the cell death program.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3