Author:
Yingtaweesittikul Hatairat,Suphavilai Chayaporn
Abstract
AbstractBackgroundTranscriptomic profiles have become crucial information in understanding diseases and improving treatments. While dysregulated gene sets are identified via pathway analysis, various machine learning models have been proposed for predicting phenotypes such as disease type and drug response based on gene expression patterns. However, these models still lack interpretability, as well as the ability to integrate prior knowledge from a protein-protein interaction network.ResultsWe propose Grandline, a graph convolutional neural network that can integrate gene expression data and structure of the protein interaction network to predict a specific phenotype. Transforming the interaction network into a spectral domain enables convolution of neighbouring genes and pinpointing high-impact subnetworks, which allow better interpretability of deep learning models. Grandline achieves high phenotype prediction accuracy (67-85% in 8 use cases), comparable to state-of-the-art machine learning models while requiring a smaller number of parameters, allowing it to learn complex but interpretable gene expression patterns from biological datasets.ConclusionTo improve the interpretability of phenotype prediction based on gene expression patterns, we developed Grandline using graph convolutional neural network technique to integrate protein interaction information. We focus on improving the ability to learn nonlinear relationships between gene expression patterns and a given phenotype and incorporation of prior knowledge, which are the main challenges of machine learning models for biological datasets. The graph convolution allows us to aggregate information from relevant genes and reduces the number of trainable parameters, facilitating model training for a small-sized biological dataset.
Publisher
Cold Spring Harbor Laboratory