Abstract
AbstractPlant apoplast is the first hub of plant-pathogen communication where pathogen effectors are recognized by plant defensive proteins and cell receptors and several signal transduction pathways are activated. As a result of this first contact, the host triggers a defence response that involves the modulation of several extra and intracellular proteins. In grapevine-pathogen interactions, little is known about the communication between cells and apoplast. Also, the role of apoplastic proteins in response to pathogens still remains a blackbox. In this study we focused on the first 6 hours after Plasmopara viticola inoculation to evaluate grapevine proteome modulation in the apoplastic fluid (APF) and whole leaf tissue. Plasmopara viticola proteome was also assessed enabling a deeper understanding of plant and pathogen communication. Our results showed that oomycete recognition, plant cell wall modifications, ROS signalling and disruption of oomycete structures are triggered in Regent after P. viticola inoculation. Our results highlight a strict relation between the apoplastic pathways modulated and the proteins identified in the whole leaf proteome. On the other hand, P. viticola proteins related to growth/morphogenesis and virulence mechanisms were the most predominant. This pioneer study highlights the early dynamics of extra and intracellular communication in grapevine defence activation that leads to the successful establishment of an incompatible interaction.
Publisher
Cold Spring Harbor Laboratory