Abstract
AbstractThe SARS-CoV-2 Omicron/BA.1 lineage emerged in late 2021 and rapidly displaced the Delta variant before being overtaken itself globally by, the Omicron/BA.2 lineage in early 2022. Here, we describe how Omicron BA.1 and BA.2 show a lower severity phenotype in a hamster model of pathogenicity which maps specifically to the spike gene. We further show that Omicron is attenuated in a lung cell line but replicates more rapidly, albeit to lower peak titres, in human primary nasal cells. This replication phenotype also maps to the spike gene. Omicron spike (including the emerging Omicron lineage BA.4) shows attenuated fusogenicity and a preference for cell entry via the endosomal route. We map the altered Omicron spike entry route and partially map the lower fusogenicity to the S2 domain, particularly the substitution N969K. Finally, we show that pseudovirus with Omicron spike, engineered in the S2 domain to confer a more Delta-like cell entry route retains the antigenic properties of Omicron. This shows a distinct separation between the genetic determinants of these two key Omicron phenotypes, raising the concerning possibility that future variants with large antigenic distance from currently circulating and vaccine strains will not necessarily display the lower intrinsic severity seen during Omicron infection.
Publisher
Cold Spring Harbor Laboratory
Cited by
246 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献