Multiplexed mRNA analysis of brain-derived extracellular vesicles upon experimental stroke in mice reveals increased mRNA content related to inflammation and recovery processes

Author:

Bub Annika,Brenna SantraORCID,Alawi Malik,Kügler Paul,Gui Yuqi,Kretz OliverORCID,Altmeppen HermannORCID,Magnus TimORCID,Puig BertaORCID

Abstract

ABSTRACTExtracellular vesicles (EVs) are lipid bilayer enclosed structures that not only represent a newly discovered means for cell-to-cell communication but may also serve as promising disease biomarkers and therapeutic tools. Apart from proteins, lipids, and metabolites, EVs can deliver genetic information such as mRNA eliciting a response in the recipient cells. In the present study, we have analyzed the mRNA content of brain-derived EVs (BDEVs) isolated 72 hours after experimental stroke in mice and compared them to controls (shams) using the nCounter® Nanostring panels, with or without prior RNA isolation from BDEVs. We found that both panels show similar results when comparing upregulated mRNA in stroke. Notably, the higher upregulated mRNAs were related to processes of stress and immune system responses, but also to anatomical structure development, cell differentiation, and extracellular matrix organization, indicating that regenerative mechanisms are already taking place at this time-point. The five top overexpressed mRNAs in stroke mice compared to shams were confirmed by RT-qPCR and, interestingly, were found to be present as full-length open-reading frame in BDEVs. We could reveal that the majority of the mRNA cargo in BDEVs was of microglial origin and probably predominantly present in small BDEVs (≤ 200 nm in diameter). However, the EV population with the highest increase in the total BDEVs pool at 72 h after stroke was of oligodendrocytic origin. Our study shows that nCounter® panels are a good tool to study mRNA content in tissue-derived EVs as they can be carried out even without previous mRNA isolation and that the mRNA cargo of BDEVs indicates their participation in inflammatory but also recovery processes after stroke.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3