Lessons from the meiotic recombination landscape of the ZMM deficient budding yeast Lachancea waltii

Author:

Dutreux Fabien,Dutta Abhishek,Peltier EmilienORCID,Bibi-Triki Sabrina,Friedrich Anne,Llorente Bertrand,Schacherer Joseph

Abstract

AbstractMeiotic recombination has been deeply characterized in a few model species only, notably in the budding yeast Saccharomyces cerevisiae. Interestingly, most members of the ZMM pathway that implements meiotic crossover interference in S. cerevisiae have been lost in Lachancea yeast species after the divergence of Lachancea kluyveri from the rest of the clade. This suggests major differences in the control of crossover distribution. After investigating meiosis in L. kluyveri, we determined the meiotic recombination landscape of Lachancea waltii and identified several characteristics that should help understand better the underlying mechanisms. Such characteristics include systematic regions of loss of heterozygosity (LOH) in L. waltii hybrids, compatible with dysregulated Spo11-mediated DNA double strand breaks (DSB) independently of meiosis. They include a higher recombination rate in L. waltii than in L. kluyveri despite the lack of multiple ZMM pro-crossover factors. L. waltii exhibits an elevated frequency of zero-crossover bivalents as L. kluyveri but opposite to S. cerevisiae. L. waltii gene conversion tracts lengths are comparable to those observed in S. cerevisiae and shorter than in L. kluyveri despite the lack of Mlh2, a factor limiting conversion tracts size in S. cerevisiae. L. waltii recombination hotspots are not shared with either S. cerevisiae or L. kluyveri, showing that meiotic recombination hotspots can evolve at a rather limited evolutionary scale within budding yeasts. Finally, in line with the loss of several ZMM genes, we found only residual crossover interference in L. waltii likely coming from the modest interference existing between recombination precursors.Significance statementStudying non-model species is relevant to understand better biological processes by shedding light on their evolutionary variations. Here we chose the non-model budding yeast Lachancea waltii to study meiotic recombination. In sexually reproducing organisms, meiotic recombination shuffles parental genetic combinations notably by crossovers that cluster in hotspots at the population level. We found remarkable variations compared to both the canonical Saccharomyces cerevisiae model and another close relative Lachancea kluyveri. Such variations notably include the loss in L. waltii of a layer of regulation of crossover distribution that is otherwise conserved in budding yeasts and mammals. They also include the lack of conservation of crossover hotspots across the Lachancea species while crossover hotspots are remarkably stable across the Saccharomyces species.Highlights-Extensive LOH events in L. waltii intraspecific hybrids-No conservation of the recombination hotspots across the Lachancea genus-Reduced but not suppressed crossover interference in the absence of the ZMM pathway-Similar gene conversion tract lengths in L. waltii, S. cerevisiae, and L. kluyveri despite the lack of MLH2 in L. waltii

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3