Tandem WW/PPxY motif interactions in WWOX: the multifaceted role of the second WW domain

Author:

Rotem-Bamberger Shahar,Fahoum Jamal,Keinan-Adamsky Keren,Tsaban Tomer,Avraham Orly,Shalev Deborah E.,Chill Jordan H.,Schueler-Furman OraORCID

Abstract

AbstractClass I WW domains mediate protein interactions by binding short linear PPxY motifs. They occur predominantly as tandem repeats, and their target proteins often contain multiple PPxY motifs, but the interplay of WW/peptide interactions is not always intuitive. WW domain-containing oxidoreductase (WWOX) protein harbors two WW domains: unstable WW1 capable of PPxY binding, and well-folded but mutated WW2 that cannot bind such motifs. WW2 is considered to act as a WW1 chaperone, but the underlying mechanism remains to be revealed. Here we combine NMR, ITC and structural modeling to elucidate the role of both WW domains in WWOX binding to single and double motif peptides derived from its substrate ErbB4. Using NMR we identified an interaction surface between the two domains that supports a WWOX conformation that is compatible with peptide substrate binding. ITC and NMR measurements reveal that while binding affinity to a single motif is marginally increased in the presence of WW2, affinity to a dual motif peptide increases tenfold, and that WW2 can directly bind double motif-peptides using its canonical binding site. Finally, differential binding of peptides in a mutagenesis study is consistent with a parallel orientation binding to the WW1-WW2 tandem domain, agreeing with structural models of the interaction. Our results reveal the complex nature of tandem WW domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both stability and binding. This opens the way to assess how evolution can utilize the multivariate nature of binding to fine-tune interactions for specific biological functions.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3