Using an electronic frailty index to predict adverse outcomes in geriatric COVID-19 patients: data from the Stockholm GeroCovid study

Author:

Mak Jonathan K. L.,Eriksdotter Maria,Annetorp Martin,Kuja-Halkola Ralf,Kananen Laura,Boström Anne-Marie,Kivipelto Miia,Metzner Carina,Jerlardtz Viktoria Bäck,Engström Malin,Johnson Peter,Lundberg Lars Göran,Åkesson Elisabet,Öberg Carina Sühl,Olsson Maria,Cederholm Tommy,Hägg Sara,Religa Dorota,Jylhävä Juulia

Abstract

ABSTRACTBackgroundThe Clinical Frailty Scale (CFS) is a strong predictor for worse outcomes in geriatric COVID-19 patients, but it is less clear whether an electronic frailty index (eFI) constructed from routinely collected electronic health records (EHRs) provides similar predictive value. This study aimed to investigate the predictive ability of an eFI in comparison to other frailty and comorbidity measures, using mortality, readmission, and the length of stay as outcomes in geriatric COVID-19 patients.MethodsWe conducted a retrospective cohort study using EHRs from nine geriatric clinics in Stockholm, Sweden, comprising 3,405 COVID-19 patients (mean age 81.9 years) between 1/3/2020 and 31/10/2021. Frailty was assessed using a 48-item eFI developed for Swedish geriatric patients, the CFS, and Hospital Frailty Risk Score (HFRS). Comorbidity was measured using the Charlson Comorbidity Index (CCI). We analyzed in-hospital mortality and 30-day readmission using logistic regression and area under receiver operating characteristic curve (AUC). 30-day and 6-month mortality were modelled by Cox regression, and the length of stay by linear regression.ResultsControlling for age and sex, a 10% increase in the eFI was associated with higher risks of in-hospital mortality (odds ratio [OR]=2.84; 95% confidence interval=2.31-3.51), 30-day mortality (hazard ratio [HR]=2.30; 1.99-2.65), 6-month mortality (HR=2.33; 2.07-2.62), 30-day readmission (OR=1.34; 1.06-1.68), and longer length of stay (β=2.28; 1.90-2.66).The CFS, HFRS and CCI similarly predicted these outcomes, but the eFI had the best predictive accuracy for in-hospital mortality (AUC=0.775).ConclusionsAn eFI based on routinely collected EHRs can be applied in identifying high-risk geriatric COVID-19 patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3