Identification of ATP2B4 regulatory element containing functional genetic variants associated with severe malaria

Author:

Nisar Samia,Torres Magali,Thiam Alassane,Pouvelle Bruno,Rosier Florian,Gallardo Frederic,Ka Oumar,Mbengue Babacar,Diallo Rokhaya Ndiaye,Brosseau Laura,Spicuglia SalvatoreORCID,Dieye Alioune,Marquet SandrineORCID,Rihet PascalORCID

Abstract

AbstractGenome-wide association studies (GWAS) for severe malaria have identified 30 genetic variants that are mostly located in non-coding regions, with only a few associations replicated in independent populations. In this study, we aimed at identifying potential causal genetic variants located in these loci and demonstrate their functional activity. We systematically investigated the regulatory effect of the SNPs in linkage disequilibrium with the tagSNPs associated with severe malaria in several populations. Annotating and prioritizing genetic variants led to the identification of a regulatory region containing 5 ATP2B4 SNPs in linkage disequilibrium with the tagSNP rs10900585. We confirmed the association of rs10900585 and also found significant associations of severe malaria with our candidate SNPs (rs11240734, rs1541252, rs1541253, rs1541254, and rs1541255) in a Senegalese population. Then, we showed that this region had both promoter and enhancer activities and that both individual SNPs and the combination of SNPs had regulatory effects using luciferase reporter assays. Moreover, CRISPR/Cas9-mediated deletion of this region decreased ATP2B4 transcript and protein levels and increased Ca2+ intracellular concentration in the K562 cell line. Taken together, our data show that severe malaria-associated genetic variants alter the activity of a promoter with enhancer function. We showed that this regulatory element controls the expression of ATP2B4 that encodes a plasma membrane calcium-transporting ATPase 4 (PMCA4), which is the major calcium pump on red blood cells. Altering the activity of this regulatory element affects the risk of severe malaria probably through calcium concentration effect on parasitaemia.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3