High performance of a GPU-accelerated variant calling tool in genome data analysis

Author:

Zhang Qian,Liu Hao,Bu Fengxiao

Abstract

AbstractRapid advances in next-generation sequencing (NGS) have facilitated ultralarge population and cohort studies that utilized whole-genome sequencing (WGS) to identify DNA variants that may impact gene function. Massive sequencing data require highly efficient bioinformatics tools to complete read alignment and variant calling as the fundamental analysis. Multiple software and hardware acceleration strategies have been developed to boost the analysis speed. This study comprehensively evaluated the germline variant calling of a GPU-based acceleration tool, BaseNumber, using WGS datasets from several sources, including gold-standard samples from the Genome in a Bottle (GIAB) project and the Golden Standard of China Genome (GSCG) project, resequenced GSCG samples, and 100 in-house samples from the China Deafness Genetics Consortium (CDGC) project. Sequencing data were analyzed on the GPU server using BaseNumber, the variant calling outputs of which were compared to the reference VCF or the results generated by the Burrows-Wheeler Aligner (BWA) + Genome Analysis Toolkit (GATK) pipeline on a generic CPU server. BaseNumber demonstrated high precision (99.32%) and recall (99.86%) rates in variant calls compared to the standard reference. The variant calling outputs of the BaseNumber and GATK pipelines were very similar, with a mean F1 of 99.69%. Additionally, BaseNumber took only 23 minutes on average to analyze a 48X WGS sample, which was 215.33 times shorter than the GATK workflow. The GPU-based BaseNumber provides a highly accurate and ultrafast variant calling capability, significantly improving the WGS analysis efficiency and facilitating time-sensitive tests, such as clinical WGS genetic diagnosis, and sheds light on the GPU-based acceleration of other omics data analyses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3