Evolution of Gram+ Streptococcus pyogenes has maximized efficiency of the Sortase A cleavage site

Author:

Readnour Bradley M.,Ayinuola Yetunde A.,Russo Brady T.,Liang Zhong,Fischetti Vincent A.,Ploplis Victoria A.,Lee Shaun W.,Castellino Francis J.ORCID

Abstract

ABSTRACTHuman plasminogen (hPg)-binding M-protein (PAM), a major virulence factor of Pattern D Streptococcus pyogenes (GAS), is the primary receptor responsible for binding and activating hPg. PAM is covalently bound to the cell wall (CW) through cell membrane (CM)-resident sortase A (SrtA)-catalyzed cleavage of the PAM-proximal C-terminal LPST-GEAA motif present immediately upstream of its transmembrane domain (TMD), and subsequent transpeptidation to the CW. These steps expose the N-terminus of PAM to the extracellular milieu (EM) to interact with PAM ligands, e.g., hPg. Previously, we found that inactivation of SrtA showed little reduction in functional binding of PAM to hPg, indicating that PAM retained in the cell membrane (CM) by the TMD nonetheless exposed its N-terminus to the EM. In the current study, we assessed the effects of mutating the Thr4 (P1) residue of the SrtA-cleavage site in PAM (Thr355 in PAM) to delay PAM in the CM in the presence of SrtA. Using rSrtA in vitro, LPSYGEAA and LPSWGEAA peptides were shown to have low activities, while LPSTGEAA had the highest activity. Isolated CM fractions of AP53/ΔSrtA cells showed that LPSYGEAA and LPSWGEAA peptides were cleaved at substantially faster rates than LPSTGEAA, even in CMs with an AP53/ΔSrtA/PAM[T355Y] double mutation, but the transpeptidation step did not occur. These results implicate another CM-resident enzyme that cleaves LPSYGEAA and LPSWGEAA motifs, most likely LPXTGase, but cannot catalyze the transpeptidation step. We conclude that the natural P1 (Thr) of the SrtA cleavage site has evolved to dampen PAM from nonfunctional cleavage by LPXTGase.IMPORTANCEWe show in this study that functional cleavage of the sortase A (SrtA) cleavage signal for M-protein, LPST*GEAA, in the Gram+ cell membrane, which allows transpeptidation of M-protein to the cell wall, as opposed to non-functional cleavage by the highly active cell membrane nonribosomal enzyme, LPXTGase, at the downstream G-residue, is highly dependent on the presence of T at position 4. From our studies, we conclude that Streptococcus pyogenes has evolved in a manner that maximized T at this position so that SrtA preferentially cleaved the sorting signal in order that the virulence factor, M-protein, was stabilized on the cell surface through covalent attachment to the cell wall.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3