iTRVZ: liquid nano-platform for signal integration on the plasma membrane

Author:

Tsunoyama Taka A.ORCID,Hoffmann ChristianORCID,Tang Bo,Hirosawa Koichiro M.ORCID,Nemoto Yuri L.ORCID,Kasai Rinshi S.ORCID,Fujiwara Takahiro K.ORCID,Suzuki Kenich G.N.,Milovanovic DragomirORCID,Kusumi AkihiroORCID

Abstract

SummarySignalling is one of the most important functions of the cellular plasma membrane (PM). A variety of extracellular signalling molecules bind to their specific receptors in the PM, and the engaged receptors in turn trigger various cytoplasmic signalling cascades. These signalling pathways are intertwined and affect each other, in a process called crosstalk, which enables the cells to fine tune the overall signal. The crosstalk of different receptor signalling pathways has been examined quite extensively, but the platform responsible for signal integration has never been discovered. Here, using single-molecule imaging, we found a nanometer-scale (50-80 nm) liquid-like protein assembly on the PM cytoplasmic surface (at a density of ∼2-μm apart from each other on average, with a lifetime of ∼10 s), working as the signal transduction and integration platform for receptors, including GPI-anchored receptors (GPI-ARs), receptor-type tyrosine kinases (RTKs), and GPCRs. The platform consists of integrin, talin, RIAM, VASP, and zyxin, and is thus termed iTRVZ. These molecules are known as focal-adhesion constituents, but iTRVZ is distinct from focal adhesions, because iTRVZ exists on both the apical and basal PMs and lack vinculin. The iTRVZ formation is driven by specific protein-protein interactions, liquid-liquid phase separation, and interactions with actin filaments and raft domains via PI(4,5)P2. iTRVZ integrates and amplifies the GPI-AR and RTK signals in a strongly non-linear fashion, and thus works as an AND gate and noise filter. These findings greatly advance our understanding of the mechanism for crosstalk between signalling pathways.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3