Abstract
AbstractTheory predicts that prior self-pollination (prior selfing) should not evolve in mixed mating species that enable delayed selfing. In this study, we test the hypotheais that prior selfing has evolved under severe pollinator limitation in the mixed mating species Commelina communis which can reproduce via delayed selfing. The hypothesis predicts that prior selfing occurs more frequently in populations with very low pollinator availability and/or in smaller flowers which receive infrequent visitations. We tested the predictions by comparing the degree of prior selfing among ten populations experiencing various levels of pollinator limitation and by examining a relationship between individual flower size and the occurrence of prior selfing. Populations with higher pollinator availability had higher prior selfing rate. Moreover, prior selfing occurs more frequently in larger flowers. These findings were totally opposite patterns of the predictions and the previous findings. We proposed new hypotheses that prior selfing has been maintained by the presence of reproductive interference from the congener and/or propotency in C. communis to explain our unexpected findings. We should verify potential effects of reproductive interference and propotency in future to elucidate the mystery of prior selfing in this mixed mating species with delayed selfing.
Publisher
Cold Spring Harbor Laboratory