Author:
Tomasevic Leo,Siebner Hartwig Roman,Thielscher Axel,Manganelli Fiore,Pontillo Giuseppe,Dubbioso Raffaele
Abstract
AbstractBackgroundThe human primary sensory (S1) and primary motor (M1) hand areas feature high-frequency neuronal responses. Electrical nerve stimulation evokes high-frequency oscillations (HFO) at around 650 Hz in the contralateral S1. Likewise, paired-pulse transcranial magnetic stimulation of M1 produces short interval intracortical facilitation (SICF) of motor evoked potentials in contralateral hand muscles. SICF features several peaks of facilitation which are separated by inter-peak intervals resembling HFO rhythmicity.HypothesisIn this study, we tested the hypothesis that the individual expressions of HFO and SICF are tightly related to each other and to the regional myelin content in the sensorimotor cortex.MethodsIn 24 healthy volunteers, we recorded HFO and SICF, and, in a subgroup of 20 participants, we mapped the cortical myelin content using the ratio between the T1- and T2-weighted MRI signal as read-out.ResultsThe individual frequencies and magnitudes of HFO and SICF were tightly correlated: the intervals between the first and second peak of cortical HFO and SICF showed a positive linear relationship (r= 0.703, p< 0.001), while their amplitudes were inversely related (r= −0.613, p= 0.001). The rhythmicity, but not the magnitude of the high-frequency responses, was related to the cortical myelin content: the higher the cortical myelin content, the shorter the inter-peak intervals of HFO and SICF.ConclusionThe results confirm a tight functional relationship between high-frequency responses in S1 (i.e., HFO) and M1 (i.e., SICF). They also establish a link between the degree of regional cortical myelination and the expression of high-frequency responses in the human cortex, giving further the opportunity to infer their possible generators.
Publisher
Cold Spring Harbor Laboratory