Virtual reality-based sensorimotor adaptation shapes subsequent spontaneous and naturalistic stimulus-driven brain activity

Author:

Wilf Meytal,Dupuis Celine,Nardo Davide,Huber Diana,Sander Sibilla,Al-Kaar Joud,Haroud Meriem,Perrin Henri,Fornari Eleonora,Crottaz-Herbette Sonia,Serino Andrea

Abstract

AbstractOur everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behaviour and associated brain modulations is challenging. Here we tackled this question implementing a prism adaptation training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N=45) underwent VRPA (with a spatial shift either to the left/right side, or with no shift), and performed fMRI sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting state and free viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between large-scale cortical networks – namely attentional and default mode/fronto-parietal networks - only for adaptation groups. Additionally, VRPA was found to bias visual representations of naturalistic videos, as following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA induced after-effect measured in behavioural tests. This study demonstrates that a brief VRPA exposure is able to change large-scale cortical connectivity and correspondingly bias the representation of naturalistic sensory inputs.Significance statementIn the current work, we tested how a brief sensorimotor experience changes subsequent brain activity and connectivity. Using virtual reality (VR) as a tool for sensorimotor training opens a window for creating otherwise impossible sensory experiences and sensorimotor interactions. Specifically, we studied how VR adaptation training in ecological conditions modulates spontaneous functional connectivity and brain representation of naturalistic real-life-like stimuli. Previous adaptation studies used artificial, lab-designed setups both during adaptation and while measuring subsequent aftereffects. Testing brain response while observing naturalistic stimuli and in resting state allowed us to stay as close as possible to naturalistic real-life-like conditions, not confounded by performance during a task. The current work demonstrates how rapid changes in free-flowing brain activity and connectivity occur following short-term VR visuomotor adaptation training in healthy individuals. Moreover, we found a link between sensory responses to naturalistic stimuli and adaptation-induced behavioural aftereffect, thus demonstrating a common source of training-induced spatial recalibration, which affects both behaviour and brain representations of naturalistic stimuli. These findings might have meaningful implications both for understanding the mechanisms underlying visuomotor plasticity in healthy individuals and for using VR adaptation training as a tool for rehabilitating brain-damaged patients suffering from deficits in spatial representation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3