Author:
McCrone John T.,Hill Verity,Bajaj Sumali,Pena Rosario Evans,Lambert Ben C.,Inward Rhys,Bhatt Samir,Volz Erik,Ruis Christopher,Dellicour Simon,Baele Guy,Zarebski Alexander E.,Sadilek Adam,Wu Neo,Schneider Aaron,Ji Xiang,Raghwani Jayna,Jackson Ben,Colquhoun Rachel,O’Toole Áine,Peacock Thomas P.,Twohig Kate,Thelwall Simon,Dabrera Gavin,Myers Richard,Faria Nuno R.,Huber Carmen,Bogoch Isaac I.,Khan Kamran,du Plessis Louis,Barrett Jeffrey C.,Aanensen David M.,Barclay Wendy S.,Chand Meera,Connor Thomas,Loman Nicholas J.,Suchard Marc A.,Pybus Oliver G.,Rambaut Andrew,Kraemer Moritz U.G.,
Abstract
SummaryThe Delta variant of concern of SARS-CoV-2 has spread globally causing large outbreaks and resurgences of COVID-19 cases1–3. The emergence of Delta in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions4,5. Here we analyse 52,992 Delta genomes from England in combination with 93,649 global genomes to reconstruct the emergence of Delta, and quantify its introduction to and regional dissemination across England, in the context of changing travel and social restrictions. Through analysis of human movement, contact tracing, and virus genomic data, we find that the focus of geographic expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced >1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers from India reduced onward transmission from importations; however the transmission chains that later dominated the Delta wave in England had been already seeded before restrictions were introduced. In England, increasing inter-regional travel drove Delta’s nationwide dissemination, with some cities receiving >2,000 observable lineage introductions from other regions. Subsequently, increased levels of local population mixing, not the number of importations, was associated with faster relative growth of Delta. Among US states, we find that regions that previously experienced large waves also had faster Delta growth rates, and a model including interactions between immunity and human behaviour could accurately predict the rise of Delta there. Delta’s invasion dynamics depended on fine scale spatial heterogeneity in immunity and contact patterns and our findings will inform optimal spatial interventions to reduce transmission of current and future VOCs such as Omicron.
Publisher
Cold Spring Harbor Laboratory
Reference95 articles.
1. GISAID - Initiative. https://www.gisaid.org/.
2. Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA
3. Vöhringer, H. S. et al. Genomic reconstruction of the SARS-CoV-2 epidemic in England. Nature 1–11 (2021).
4. Managing COVID-19 importation risks in a heterogeneous world
5. Dhar, M. S. et al. Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India. Science eabj9932 (2021).