A predictive microfluidic model of human glioblastoma to assess trafficking of blood-brain barrier penetrant nanoparticles

Author:

Straehla Joelle P.,Hajal CynthiaORCID,Safford Hannah C.,Offeddu Giovanni S.,Boehnke Natalie,Dacoba Tamara G.,Wyckoff Jeffrey,Kamm Roger D.,Hammond Paula T.

Abstract

AbstractThe blood-brain barrier represents a significant challenge for the treatment of high-grade gliomas, and our understanding of drug transport across this critical biointerface remains limited. To advance preclinical therapeutic development for gliomas, there is an urgent need for predictive in vitro models with realistic blood-brain barrier vasculature. Here, we report a vascularized human glioblastoma (GBM) model in a microfluidic device that accurately recapitulates brain tumor vasculature with self-assembled endothelial cells, astrocytes, and pericytes to investigate the transport of targeted nanotherapeutics across the blood-brain barrier and into GBM cells. Using modular layer-by-layer assembly, we functionalized the surface of nanoparticles with GBM-targeting motifs to improve trafficking to tumors. We directly compared nanoparticle transport in our in vitro platform with transport across mouse brain capillaries using intravital imaging, validating the ability of the platform to model in vivo blood-brain barrier transport. We investigated the therapeutic potential of functionalized nanoparticles by encapsulating cisplatin and showed improved efficacy of these GBM-targeted nanoparticles both in vitro and in an in vivo orthotopic xenograft model. Our vascularized GBM model represents a significant biomaterials advance, enabling in-depth investigation of brain tumor vasculature and accelerating the development of targeted nanotherapeutics.Significance StatementThe blood-brain barrier represents a major therapeutic challenge for the treatment of glioblastoma, and there is an unmet need for in vitro models that recapitulate human biology and are predictive of in vivo response. Here we present a new microfluidic model of vascularized glioblastoma featuring a tumor spheroid in direct contact with self-assembled vascular networks comprised of human endothelial cells, astrocytes, and pericytes. This model was designed to accelerate the development of targeted nanotherapeutics, and enabled rigorous assessment of a panel of surface-functionalized nanoparticles designed to exploit a receptor overexpressed in tumor-associated vasculature. Trafficking and efficacy data in the in vitro model compared favorably to parallel in vivo data, highlighting the utility of the vascularized glioblastoma model for therapeutic development.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neurovascular models for organ-on-a-chips;In vitro models;2022-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3