Author:
Gielnik Maciej,Szymańska Aneta,Dong Xiaolin,Jarvet Jüri,Svedružić Željko M.,Gräslund Astrid,Kozak Maciej,Wärmländer Sebastian K. T. S.
Abstract
AbstractMisfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in the protein misfolding, and metal imbalance may be part of TSE pathologies. PrPC is a combined Cu(II) and Zn(II) metal binding protein, where the main metal binding site is located in the octarepeat (OR) region. Here, we used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Upon metal binding, the OR region seems to adopt a transient antiparallel β-sheet hairpin structure. Fluorescence spectroscopy data indicates that under neutral conditions, the OR region can bind both Cu(II) and Zn(II) ions, whereas under acidic conditions it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of both metal ions to the OR region results in formation of β-hairpin structures. As formation of β-sheet structures is a first step towards amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSEs.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献