Abstract
AbstractCerebrospinal fluid (CSF) movement within the brain interstitium is essential for the development and functioning of the brain. However, the interstitium has largely been thought of as a single entity through which CSF circulates, and it is not known whether specific cell populations within the CNS preferentially interact with CSF. Here, we developed a novel technique for CSF tracking, gold nanoparticle enhanced X-ray microtomography, to achieve micrometer-scale resolution visualization of CSF pathways during development. Using this method and subsequent histological analysis, we map global CSF pathways and present novel particle size-dependent circulation patterns through the CNS. We identify an intraparenchymal CSF circulation that targets stem cell-rich and cholinergic neuronal populations. CSF solute distribution to these areas is mediated by CSF flow along projections from the basal cisterns which is altered in posthemorrhagic hydrocephalus. Our study uncovers region-specific patterns in a biologically driven CSF circulation that has implications for normal brain development and the pathophysiology of hydrocephalus and neurodegenerative disorders.
Publisher
Cold Spring Harbor Laboratory