In the back of your mind: Cortical mapping of tactile and proprioceptive paraspinal afferent inputs

Author:

Cole David M.ORCID,Stämpfli Philipp,Gandia Robert,Schibli Louis,Gantner Sandro,Schuetz Philipp,Meier Michael L.

Abstract

AbstractPersistent pain alters brain-body representations, highlighting their potential pathological significance. In chronic low back pain (LBP), sparse evidence points towards a shift of the cortical representation of sensory afferents of the back. However, systematic investigations of the cortical representation of tactile and proprioceptive paraspinal afferents along the thoracolumbar axis are lacking. Detailed cortical maps of paraspinal afferent input might be crucial to further explore potential relationships between brain changes and the development and maintenance of chronic LBP. We therefore validated a novel and functional magnetic resonance imaging-(fMRI-)compatible method of mapping cortical representations of tactile and proprioceptive afferents of the back, using pneumatic vibrotactile stimulation (“pneuVID”) at varying frequencies and paraspinal locations, in conjunction with high-resolution fMRI. We hypothesised that: (i) high (80 Hz) frequency stimulation would lead to increased postural sway compared to low (20 Hz) stimulation, due to differential evoked mechanoreceptor contributions to postural control (proprioceptive vs tactile); and (ii) that high (80 Hz) versus low (20 Hz) frequency stimulation would be associated with neuronal activity in distinct primary somatosensory (S1) and motor (M1) cortical targets of tactile and proprioceptive afferents (N=15, healthy volunteers). Additionally, we expected neural representations to vary spatially along the thoracolumbar axis. We found significant differences between neural representations of low and high frequency stimulation and between representations of thoracic and lumbar paraspinal locations, in several bilateral sensorimotor cortical regions. Proprioceptive (80 Hz) stimulation preferentially activated sub-regions S1 3a and M1 4p, while tactile (20 Hz) stimulation was more encoded in S1 3b and M1 4a. Moreover, in S1, lower back proprioceptive stimulation activated dorsal-posterior representations, compared to ventral-anterior representations activated by upper back stimulation. As per our hypotheses, we found distinct sensorimotor cortical tactile and proprioceptive representations, with the latter displaying clear topographic differences between the upper and lower back. This thus represents the first behavioural and neurobiological validation of the novel pneuVID method for stimulating muscle spindles and mapping cortical representations of paraspinal afferents. Future investigations of detailed cortical maps will be of major importance in elucidating the role of cortical reorganization in the pathophysiology of chronic LBP.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3