A convergent malignant phenotype in B-cell acute lymphoblastic leukemia involving the splicing factor SRRM1
Author:
Closa AdriaORCID, Reixachs-Solé MarinaORCID, Fuentes-Fayos Antonio C.ORCID, Hayer Katharina E.ORCID, Melero Juan LuisORCID, Adriaanse Fabienne R. S., Bos Romy S., Torres-Diz ManuelORCID, Hunger StephenORCID, Roberts Kathryn G.ORCID, Mullighan CharlesORCID, Stam Ronald W., Thomas-Tikhonenko AndreiORCID, Castaño Justo P.ORCID, Luque Raúl M.ORCID, Eyras EduardoORCID
Abstract
AbstractA significant proportion of B-cell acute lymphoblastic leukemia (B-ALL) patients remains with a dismal prognosis due to yet undetermined mechanisms. We performed a comprehensive multicohort analysis of gene fusions, gene expression, and RNA splicing alterations to uncover molecular signatures potentially linked to the observed poor outcome. We identified 84 fusions with significant allele frequency across patients. We identified an expression signature that predicts high risk independently of the gene fusion background. This signature includes the upregulation of the splicing factor SRRM1, which potentially impacts splicing events associated with poor outcomes through protein-protein interactions with other splicing factors. Experiments in B-ALL cell lines provided further evidence for the role of SRRM1 on cell survival, proliferation, and invasion. Our findings reveal a convergent mechanism of aberrant RNA processing that sustains a malignant phenotype independently of gene fusions and could complement current clinical strategies in B-ALL.
Publisher
Cold Spring Harbor Laboratory
Reference63 articles.
1. Agraz-Doblas A , Bueno C , Bashford-Rogers R , Roy A , Schneider P , Bardini M , Ballerini P , Cazzaniga G , Moreno T , Revilla C , et al. 2019. Unravelling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis. Haematologica. http://www.ncbi.nlm.nih.gov/pubmed/30679323. 2. Leveraging transcript quantification for fast computation of alternative splicing profiles 3. Andersson AK , Ma J , Wang J , Chen X , Gedman AL , Dang J , Nakitandwe J , Holmfeldt L , Parker M , Easton J , et al. 2015. The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias. Nat Genet 47. 4. Andrews S. 2010. FastQC: A Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 5. Babiceanu M , Qin F , Xie Z , Jia Y , Lopez K , Janus N , Facemire L , Kumar S , Pang Y , Qi Y , et al. 2016. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res 44. http://www.ncbi.nlm.nih.gov/pubmed/26837576.
|
|