Abstract
ABSTRACTComputing phenotypic similarity has been shown to be useful in identification of new disease genes and for rare disease diagnostic support. Genotype–phenotype data from orthologous genes in model organisms can compensate for lack of human data to greatly increase genome coverage. Work over the past decade has demonstrated the power of cross-species phenotype comparisons, and several cross-species phenotype ontologies have been developed for this purpose. The relative contribution of different model organisms to identifying diseaseassociated genes using computational approaches is not yet fully explored. We use methods based on phenotype ontologies to semantically relate phenotypes resulting from loss-of-function mutations in different model organisms to disease-associated phenotypes in humans. Semantic machine learning methods are used to measure how much different model organisms contribute to the identification of known human gene–disease associations. We find that only mouse phenotypes can accurately predict human gene–disease associations. Our work has implications for the future development of integrated phenotype ontologies, as well as for the use of model organism phenotypes in human genetic variant interpretation.
Publisher
Cold Spring Harbor Laboratory
Reference77 articles.
1. The future of model organisms in human disease research
2. Quantitative evaluation of ontology design patterns for combining pathology and anatomy ontologies;Scientific reports,2019
3. Searching online mendelian inheritance in man (omim): a knowledgebase of human genes and genetic phenotypes;Current protocols in bioinformatics,2017
4. Gene Ontology: tool for the unification of biology
5. Baldridge, D. ,, Wangler, M. F. , Bowman, A. N. , Yamamoto, S. , Schedl, T. , Pak, S. C. , Postlethwait, J. H. , Shin, J. , Solnica-Krezel, L. , Bellen, H. J. and Westerfield, M. (2021), ‘Model organisms contribute to diagnosis and discovery in the undiagnosed diseases network: current state and a future vision’, Orphanet Journal of Rare Diseases 16(1). URL: https://doi.org/10.1186/s13023-021-01839-9