How much do model organism phenotypes contribute to the computational identification of human disease genes?

Author:

Alghamdi Sarah M.ORCID,Schofield Paul N.ORCID,Hoehndorf RobertORCID

Abstract

ABSTRACTComputing phenotypic similarity has been shown to be useful in identification of new disease genes and for rare disease diagnostic support. Genotype–phenotype data from orthologous genes in model organisms can compensate for lack of human data to greatly increase genome coverage. Work over the past decade has demonstrated the power of cross-species phenotype comparisons, and several cross-species phenotype ontologies have been developed for this purpose. The relative contribution of different model organisms to identifying diseaseassociated genes using computational approaches is not yet fully explored. We use methods based on phenotype ontologies to semantically relate phenotypes resulting from loss-of-function mutations in different model organisms to disease-associated phenotypes in humans. Semantic machine learning methods are used to measure how much different model organisms contribute to the identification of known human gene–disease associations. We find that only mouse phenotypes can accurately predict human gene–disease associations. Our work has implications for the future development of integrated phenotype ontologies, as well as for the use of model organism phenotypes in human genetic variant interpretation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3