Author:
Zhang Hannah J.,Kao Chien-Min,Zammit Matthew,Govind Anitha P,Mitchell Samuel,Holderman Nathanial,Bhuiyan Mohammed,Freifelder Richard,Zhuang Xiaoxi,Mukherjee Jogeshwar,Chen Chin-Tu,Green William N.
Abstract
AbstractA question relevant to nicotine addiction is how nicotine and other nicotinic receptor membrane-permeant ligands, such as the anti-smoking drug varenicline (Chantix), distribute in the brain. Previously, we found that varenicline is trapped in intracellular acidic vesicles that contain α4β2-type nicotinic receptors (α4β2Rs). Nicotine is not trapped but concentrates there. Here, combining subcellular methods with in vivo PET imaging, we present evidence that the α4β2R PET ligand, 2-FA85380 (2-FA), is trapped within α4β2R-containing acidic vesicles, while the PET ligand, Nifene, is not trapped. Additional evidence, using a fluorescent-tagged α4β2R PET ligand, Nifrolidine, identified the trapping vesicles as Golgi satellites, an organelle regulated by nicotine in neurons where α4β2Rs are expressed and traffics and processes α4β2Rs in those neurons. Using PET imaging, 2-[18F]FA kinetics in high α4β2R-expressing regions were much slower than ligand unbinding rates consistent with 2-FA trapping in Golgi satellites extending ligand residence time and 2-[18F]FA imaging of the Golgi satellites. Chloroquine, which dissipates acidic organelle pH gradients, reduced 2-[18F]FA distribution in vivo consistent with ligand trapping. In contrast, [18F]Nifene kinetics were rapid, consistent with ligand residence time reflecting ligand unbinding rates, and [18F]Nifene imaging all α4β2R pools. Specific 2-[18F]FA and [18F]Nifene signals were eliminated in β2 subunit knockout mice or by acute nicotine injections demonstrating binding to high-affinity sites on β2-containing receptors. Altogether, we find that kinetic differences in α4β2R PET ligands are consistent with their distribution among different α4β2R pools in the brain, [18F]Nifene binding and imaging all ligand-binding α4β2Rs and 2-[18F]FA imaging α4β2Rs in Golgi satellites.SignificanceMechanisms of nicotine addiction remain poorly understood. An earlier study using in vitro methods found that the anti-smoking nicotinic ligand, varenicline (Chantix) was trapped in α4β2R-containing acidic vesicles. Using a fluorescent labeled high-affinity nicotinic ligand, this study provided evidence that these intracellular acidic vesicles were α4β2R-containing Golgi satellites. In vivo PET imaging with F-18 labeled nicotinic ligands provided additional evidence that differences in PET ligand trapping in acidic vesicles were the cause of differences in PET ligand kinetics and subcellular distributions. These findings combining in vitro and in vivo imaging revealed new mechanistic insights into the kinetics of weak base PET imaging ligands and the subcellular mechanisms underlying nicotine addiction.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献