Cell cycle-dependent recruitment of FtsN to the divisome in Escherichia coli

Author:

Männik JaanaORCID,Pichoff Sebastien,Lutkenhaus Joe,Männik Jaan

Abstract

AbstractCell division in Escherichia coli starts with the formation of an FtsZ protofilament network in the middle of the cell, the Z ring. However, only after a considerable lag period do the cells start to form a midcell constriction. The basis of this cell cycle checkpoint is yet unclear. The onset of constriction is dependent upon the arrival of so-called late divisome proteins, among which, FtsN is the last arriving essential one. The timing and dependency of FtsN arrival to the divisome, along with genetic evidence, suggests it triggers cell division. In this study, we used high throughput fluorescence microscopy to quantitatively determine the arrival of FtsN and the early divisome protein ZapA to midcell at a single-cell level during the cell cycle. Our data show that recruitment of FtsN coincides with the initiation of constriction within experimental uncertainties and that the relative fraction of ZapA/FtsZ reaches its highest value at this event. We also find that FtsN is recruited to midcell in two distinct temporal stages with septal peptidoglycan synthesis starting in the first stage and accelerating in the second stage, during which the amount of ZapA/FtsZ in the midcell decreases. In the presence of FtsA*, recruitment of FtsN becomes concurrent with the formation of the Z-ring, but constriction is still delayed indicating FtsN recruitment is not rate limiting, at least under these conditions. Finally, our data support the recently proposed idea that ZapA/FtsZ and FtsN are part of physically separate complexes in midcell throughout the whole septation process.ImportanceIn E. coli, FtsN has been considered a trigger for septal wall synthesis and the onset of constriction. While FtsN is critical for cell division, its recruitment kinetics to midcell has not been characterized. Using quantitative high throughput microscopy, we find that FtsN is recruited to midcell in two temporal stages. The septal cell wall synthesis starts at the first stage and accelerates in the second stage. In the presence of an FtsA mutant defective in self-interaction, recruitment of FtsN to midcell is enhanced, but constriction is still delayed. Our results shed new light on an essential but not rate-limiting role of FtsN in E. coli cell division and also support the view that ZapA/FtsZ and FtsN are part of physically separate complexes in midcell throughout the division process.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3