Abnormal larval neuromuscular junction morphology and physiology in Drosophila Prickle isoform mutants with defective axonal transport and adult seizure behavior

Author:

O’Harrow Tristan,Ueda Atsushi,Xing Xiaomin,Ehaideb Salleh,Manak J. Robert,Wu Chun-Fang

Abstract

AbstractPrevious studies have demonstrated that mutations of the Drosophila planar cell polarity gene prickle (pk) result in altered microtubule-mediated vesicular transport in larval motor axons, as well as adult neuronal circuit hyperexcitability and epileptic behavior. It is also known that mutant alleles of the prickle-prickle (pkpk) and prickle-spiny-legs (pksple) isoforms differ in phenotype but display isoform counterbalancing effects in heteroallelic pkpk/pksple flies to ameliorate adult motor circuit and behavioral hyperexcitability. We have further investigated the larval neuromuscular junction (NMJ) and uncovered robust phenotypes in both pkpk and pksple alleles (heretofore referred to as pk and sple alleles, respectively), including synaptic terminal overgrowth, as well as irregular motor axon terminal excitability, poor vesicle release synchronicity, and altered efficacy of synaptic transmission. We observed significant increase in whole-cell excitatory junctional potential (EJP) in pk homozygotes, which was restored to near WT level in pk/sple heterozygotes. We further examined motor terminal excitability sustained by presynaptic Ca2+ channels, under the condition of pharmacological blockade of Na+ and K+ channel function. Such manipulation revealed extreme Ca2+ channel-dependent nerve terminal excitability in both pk and sple mutants. However, when combined in pk/sple heterozygotes, such terminal hyper-excitability was restored to nearly normal. Focal recording from individual synaptic boutons revealed asynchronous vesicle release in both pk and sple homozygotes, which nevertheless persisted in pk/sple heterozygotes without indications of isoform counter-balancing effects. Similarly, the overgrowth at NMJs was not compensated in pk/sple heterozygotes, exhibiting an extremity comparable to that in pk and sple homozygotes. Our observations uncovered differential roles of the pk and sple isoforms and their distinct interactions in the various structural and functional aspects of the larval NMJ and adult neural circuits.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3