Soluble MAC is primarily released from MAC-resistant bacteria that potently convert complement component C5

Author:

Doorduijn Dennis J.ORCID,Lukassen Marie V.,van ’t Wout Marije F.L.,Franc Vojtech,Ruyken Maartje,Bardoel Bart W.,Heck Albert J.R.ORCID,Rooijakkers Suzan H. M.ORCID

Abstract

AbstractThe Membrane Attack Complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC is formed when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC, or terminal complement complex (TCC)) are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. Both the increase in C5 conversion and sMAC generation were linked to the expression of lipopolysaccharide (LPS) O-Antigen in the bacterial outer membrane. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Release of MAC precursors from bacteria induced lysis of bystander human erythrocytes in the absence of other serum components. However, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this bystander lysis. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to 3 copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3