Therapeutic advantages of combined gene/cell therapy strategies in a murine model of GM2 gangliosidosis

Author:

Sala Davide,Ornaghi Francesca,Morena Francesco,Argentati Chiara,Valsecchi Manuela,Alberizzi Valeria,Di Guardo Roberta,Bolino Alessandra,Aureli Massimo,Martino Sabata,Gritti Angela

Abstract

ABSTRACTThe GM2 gangliosidoses Tay-Sachs disease and Sandhoff disease (SD) are respectively caused by mutations in the HEXA and HEXB genes encoding the α and β subunits of β-N-acetylhexosaminidase (Hex). The consequential accumulation of ganglioside in the brain leads to severe and progressive neurological impairment. There are currently no approved therapies to counteract or reverse the effects of GM2 gangliosidosis. Adeno-associated vector (AAV)-based investigational gene therapy (GT) products have raised expectations but come with safety and efficacy issues that need to be addressed. Thus, there is an urgent need to develop novel therapies targeting the CNS and other affected tissues that are appropriately timed to ensure pervasive metabolic correction and counteract disease progression. In this report, we show that the sequential administration of lentiviral vector (LV)-mediated intracerebral (IC) GT and bone marrow transplantation (BMT) in pre-symptomatic SD mice provide a timely and long-lasting source of the Hex enzyme in the central and peripheral nervous systems and peripheral tissues, leading to global rescue of the disease phenotype. Combined therapy showed a clear therapeutic advantage compared to individual treatments in terms of lifespan extension and normalization of the neuroinflammatory and neurodegenerative phenotypes of the SD mice. These benefits correlated with a time-dependent increase in Hex activity and a remarkable reduction in GM2 storage in the brain tissues that single treatments failed to achieve. Our results highlight the complementary and synergic mode of action of LV-mediated IC GT and BMT, clarify the relative contribution of treatments to the therapeutic outcome, and inform on the realistic threshold of enzymatic activity that is required to achieve a significant therapeutic benefit, with important implications for the monitoring and interpretation of ongoing experimental therapies, and for the design of more effective treatment strategies for GM2 gangliosidosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3