Abstract
AbstractGaining structural insights into the protein-protein interactome is essential to understand biological phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed DeepRank, a deep-learning framework to facilitate pattern learning from protein-protein interfaces using Convolutional Neural Network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required to desensitize the network to the input data orientation which dramatically impairs the computation performance. Representing protein-protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using graph neural networks (GNN) approaches, bypassing those limitations.We have developed DeepRank-GNN, a framework that converts protein-protein interfaces from PDB 3D coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized, and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN’s performance for scoring docking models using a dedicated graph interaction neural network (GINet). We show that this graph-based model performs better than DeepRank, DOVE and HADDOCK scores and competes with iScore on the CAPRI score set. We show a significant gain in speed and storage requirement using DeepRank-GNN as compared to DeepRank.DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-GNN.Contacta.m.j.j.bonvin@uu.nl
Publisher
Cold Spring Harbor Laboratory
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献